Understanding the electronic reorganization along the nonpolar [3 + 2] cycloaddition reactions of carbonyl ylides

J Org Chem. 2011 Jan 21;76(2):373-9. doi: 10.1021/jo101367v. Epub 2010 Dec 15.

Abstract

The nonpolar [3 + 2] cycloaddition (32CA) reaction of the carbonyl ylide (CY) 23 with tetramethylethylene (TME) 24 has been studied with DFT methods at the B3LYP/6-31G* level. This cycloaddition reaction, which has a very low activation energy of 4.7 kcal/mol, takes place through a synchronous transition structure. A topological analysis of the ELF along the 32CA reaction provides a new scope of the electronic structure of CY 23 as a pseudodiradical species offering a sound explanation of the high reactivity of this CY in nonpolar reactions. In addition, this analysis points to the nonparticipation of the oxygen lone pairs in the 32CA reaction. This cycloaddition can be seen as a pseudodiradical attack of the terminal carbon atoms of the CY 23 on the π system of TME 24. Therefore, the present study establishes that this 32CA reaction, which is not a pericyclic electron reorganization, may be electronically classified as a [2n + 2π] process.