Defining the critical period for neocortical neurogenesis after pediatric brain injury

Dev Neurosci. 2010;32(5-6):488-98. doi: 10.1159/000321607. Epub 2010 Dec 14.

Abstract

Pediatric traumatic brain injury (TBI) is a significant and underappreciated societal problem. Whereas many TBI studies have evaluated the mechanisms of cell death after TBI, fewer studies have evaluated the extent to which regeneration is occurring. Here we used a cryoinjury model to damage the somatosensory cortex of rats at postnatal day 6 (P6), P10 and P21. We evaluated the production of new neocortical neurons using a combination of 5-bromo-2-deoxyuridine (BrdU) labeling combined with staining for doublecortin (DCX). BrdU+/DCX+ bipolar cells were observed adjacent to the neocortical lesion, with their processes oriented perpendicular to the pial surface. As the animals aged, both the overall proliferative response as well as the production of neocortical neuroblasts diminished, with P6 animals responding most robustly, P10 animals less strongly, and P21 animals showing a very modest proliferative response and virtually no evidence of neocortical neurogenesis. When BrdU was administered at increasingly delayed intervals after the injury at P6, there was a clear difference in the number of new neuroblasts produced as a function of age, with the greatest number of new neocortical neurons produced between 4 and 7 days after the injury. These studies demonstrate that the immature brain has the capacity to produce neocortical neurons after traumatic injury, but this capacity diminishes as the brain continues to develop. Furthermore, in contrast to moderate hypoxic/ischemic brain damage in the P6 rat, where neurogenesis persists for at least 2 months, the response to cryoinjury is quite different as the neurogenic response diminishes over time.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Brain Injuries / pathology*
  • Cell Proliferation
  • Disease Models, Animal
  • Doublecortin Protein
  • Fluorescent Antibody Technique
  • Microscopy, Confocal
  • Neocortex / growth & development*
  • Neocortex / injuries
  • Neural Stem Cells / cytology
  • Neurogenesis / physiology*
  • Neurons / cytology*
  • Rats
  • Rats, Wistar