Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective

Chemosphere. 2011 Aug;84(6):759-66. doi: 10.1016/j.chemosphere.2011.02.019. Epub 2011 Mar 4.

Abstract

The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis-the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry. Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand for P far outstrips the geologic replacement for P and few prospects exist for new discoveries of phosphate rock.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ecological and Environmental Phenomena
  • Geologic Sediments / chemistry*
  • Geological Phenomena
  • Phosphates / chemistry*
  • Phosphorus / chemistry*
  • Seawater / chemistry

Substances

  • Phosphates
  • Phosphorus