A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling

Cell Death Dis. 2011 May 19;2(5):e159. doi: 10.1038/cddis.2011.27.

Abstract

Nanoparticles are now emerging as a novel class of autophagy activators. Functionalized single-walled carbon nanotubes (f-SWCNTs) are valuable nanomaterials in many industries. This article is designed to assess the autophagic response for f-SWCNTs exposure in vitro and in vivo. A few types of f-SWCNTs were screened in human lung adenocarcinoma A549 cells for the autophagic response and related pathways in vitro. Formation of autophagosomes and LC3-II upregulation were confirmed on the basis of electron microscopy and LC3 western blotting for COOH-CNT, but not for PABS-CNT and PEG-CNT. MTT assay showed marked increase in cell viability, when COOH-CNT was added to cells in the presence of autophagy inhibitor 3MA, ATG6 or TSC2 siRNA. Consistent with the involvement of the Akt-TSC1/2-mTOR pathway, the phosphorylation levels of mTOR, mTOR's substrate S6 and Akt were shown significantly decreased in A549 cells on treatment with COOH-CNT using western blotting. What's more, autophagy inhibitor 3MA significantly reduced the lung edema in vivo. In a word, COOH-CNT induced autophagic cell death in A549 cells through the AKT-TSC2-mTOR pathway and caused acute lung injury in vivo. Inhibition of autophagy significantly reduced COOH-CNT-induced autophagic cell death and ameliorated acute lung injury in mice, suggesting a potential remedy to address the growing concerns on the safety of nanomaterials.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Lung Injury / chemically induced
  • Acute Lung Injury / metabolism*
  • Acute Lung Injury / pathology
  • Adenine / analogs & derivatives
  • Adenine / pharmacology
  • Animals
  • Autophagy / drug effects*
  • Blotting, Western
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Gene Silencing
  • Humans
  • Lung / drug effects*
  • Lung / metabolism*
  • Lung / pathology
  • Male
  • Mice
  • Microscopy, Electron
  • Nanotubes, Carbon* / adverse effects
  • Nanotubes, Carbon* / chemistry
  • Phagosomes / drug effects
  • Phagosomes / metabolism
  • Phagosomes / pathology
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Small Interfering / metabolism
  • RNA, Small Interfering / pharmacology
  • Signal Transduction / drug effects
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism*
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / metabolism*

Substances

  • Nanotubes, Carbon
  • RNA, Small Interfering
  • TSC2 protein, human
  • Tsc2 protein, mouse
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins
  • 3-methyladenine
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • Adenine