Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

Biofabrication. 2011 Jun;3(2):025004. doi: 10.1088/1758-5082/3/2/025004. Epub 2011 Jun 2.

Abstract

Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 °C and 695 °C. The sintered scaffolds had pore sizes ranging from 300 to 800 µm with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bone and Bones / chemistry*
  • Bone and Bones / cytology
  • Cell Line
  • Cell Proliferation
  • Durapatite / chemistry
  • Glass / chemistry*
  • Humans
  • Lasers
  • Mice
  • Osteoblasts / cytology
  • Porosity
  • Tissue Engineering / instrumentation
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • Durapatite