Processing information related to centrally initiated locomotor and voluntary movements by feline spinocerebellar neurones

J Physiol. 2011 Dec 1;589(Pt 23):5709-25. doi: 10.1113/jphysiol.2011.213678. Epub 2011 Sep 19.

Abstract

Feed-back information on centrally initiated movements is processed at both supraspinal and spinal levels and is forwarded by a variety of neurones. The aim of the present study was to examine how descending commands relayed by reticulospinal neurones are monitored by a population of spinocerebellar tract neurones. Our main question was whether a spinal border (SB) subpopulation of ventral spinocerebellar tract (VSCT) neurones monitor actions of reticulospinal neurones with input from the mesencephalic locomotor region (MLR) as well as from pyramidal tract (PT) neurones. In the majority of intracellularly recorded SB neurons, stimuli applied in the MLR and in the medullary pyramids evoked EPSPs in parallel with EPSPs evoked by stimulation of axons of reticulospinal neurones in the medial longitudinal fascicle (MLF). In extracellularly recorded neurones short trains of stimuli applied in the ipsilateral and contralateral pyramids potently facilitated discharges evoked from the MLF, as well as EPSPs recorded intracellularly. In both cases the facilitation involved the disynaptic but not the monosynaptic actions. These results indicate that reticulospinal neurones activating SB neurones (or more generally VSCT neurones) are co-excited by axon-collaterals of other reticulospinal neurones and by fibres stimulated within the MLR and PTs. The study leads to the conclusion that these spinocerebellar neurones monitor descending commands for centrally initiated voluntary as well as locomotor movements relayed by reticulospinal neurones. Thereby they may provide the cerebellum with feed-back information on the likely outcome of these commands and any corrections needed to avoid errors in the issuing movements.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cats
  • Cerebellum / physiology*
  • Electric Stimulation
  • Excitatory Postsynaptic Potentials / physiology
  • Locomotion / physiology*
  • Motor Neurons / physiology
  • Movement / physiology*
  • Neurons / physiology*
  • Spinal Cord / physiology*