SPR imaging biosensor for the 20S proteasome: sensor development and application to measurement of proteasomes in human blood plasma

Mikrochim Acta. 2011 Oct;175(1-2):177-184. doi: 10.1007/s00604-011-0656-6. Epub 2011 Jul 24.

Abstract

The 20S proteasome is a multicatalytic enzyme complex responsible for intracellular protein degradation in mammalian cells. Its antigen level or enzymatic activity in blood plasma are potentially useful markers for various malignant and nonmalignant diseases. We have developed a method for highly selective determination of the 20S proteasome using a Surface Plasmon Resonance Imaging (SPRI) technique. It is based on the highly selective interaction between the proteasome's catalytic β5 subunit and immobilized inhibitors (the synthetic peptide PSI and epoxomicin). Inhibitor concentration and pH were optimized. Analytical responses, linear ranges, accuracy, precision and interferences were investigated. Biosensors based on either PSI and epoxomicin were found to be suitable for quantitative determination of the proteasome, with a precision of ±10% for each, and recoveries of 102% and 113%, respectively, and with little interference by albumin, trypsin, chymotrypsin, cathepsin B and papain. The proteasome also was determined in plasma of healthy subjects and of patients suffering from acute leukemia. Both biosensors gave comparable results (2860 ng·mL-1 on average for control, and 42300 ng·mL-1 on average for leukemia patients).FigureThe synthetic peptide aldehyde Z-Ile-Glu(OBut)-Ala-Leu-H (PSI) and a microbial α',β' epoxyketone peptide epoxomicin was used to develop SPRI biosensor for the highly selective determination of the 20S proteasome concentration, and to evaluate the sensor applicability for the determination of 20S proteasome in human blood plasma.