Advancing neuroscience through epigenetics: molecular mechanisms of learning and memory

Dev Neuropsychol. 2011;36(7):810-27. doi: 10.1080/87565641.2011.606395.

Abstract

Humans share 96% of our 30,000 genes with Chimpanzees. The 1,200 genes that differ appear at first glance insufficient to describe what makes us human and them apes. However, we are now discovering that the mechanisms that regulate how genes are expressed tell a much richer story than our DNA alone. Sections of our DNA are constantly being turned on or off, marked for easy access, or secluded and hidden away, all in response to ongoing cellular activity. In the brain, neurons encode information-in effect memories-at the cellular level. Yet while memories may last a lifetime, neurons are dynamic structures. Every protein in the synapse undergoes some form of turnover, some with half-lives of only hours. How can a memory persist beyond the lifetimes of its constitutive molecular building blocks? Epigenetics-changes in gene expression that do not alter the underlying DNA sequence-may be the answer. In this article, epigenetic mechanisms including DNA methylation and acetylation or methylation of the histone proteins that package DNA are described in the context of animal learning. Through the interaction of these modifications a "histone code" is emerging wherein individual memories leave unique memory traces at the molecular level with distinct time courses. A better understanding of these mechanisms has implications for treatment of memory disorders caused by normal aging or diseases including schizophrenia, Alzheimer's, depression, and drug addiction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • DNA Methylation
  • Epigenesis, Genetic / physiology*
  • Epigenomics / methods
  • Gene Expression Regulation
  • Histones / genetics
  • Histones / metabolism
  • Humans
  • Learning*
  • Neurosciences*

Substances

  • Histones