Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies

Int J Comput Assist Radiol Surg. 2012 Jul;7(4):547-56. doi: 10.1007/s11548-011-0660-7. Epub 2011 Oct 21.

Abstract

Introduction: Presenting visual feedback for image-guided surgery on a monitor requires the surgeon to perform time-consuming comparisons and diversion of sight and attention away from the patient. Deficiencies in previously developed augmented reality systems for image-guided surgery have, however, prevented the general acceptance of any one technique as a viable alternative to monitor displays. This work presents an evaluation of the feasibility and versatility of a novel augmented reality approach for the visualisation of surgical planning and navigation data. The approach, which utilises a portable image overlay device, was evaluated during integration into existing surgical navigation systems and during application within simulated navigated surgery scenarios.

Methods: A range of anatomical models, surgical planning data and guidance information taken from liver surgery, cranio-maxillofacial surgery, orthopaedic surgery and biopsy were displayed on patient-specific phantoms, directly on to the patient's skin and on to cadaver tissue. The feasibility of employing the proposed augmented reality visualisation approach in each of the four tested clinical applications was qualitatively assessed for usability, visibility, workspace, line of sight and obtrusiveness.

Results: The visualisation approach was found to assist in spatial understanding and reduced the need for sight diversion throughout the simulated surgical procedures. The approach enabled structures to be identified and targeted quickly and intuitively. All validated augmented reality scenes were easily visible and were implemented with minimal overhead. The device showed sufficient workspace for each of the presented applications, and the approach was minimally intrusiveness to the surgical scene.

Conclusion: The presented visualisation approach proved to be versatile and applicable to a range of image-guided surgery applications, overcoming many of the deficiencies of previously described AR approaches. The approach presents an initial step towards a widely accepted alternative to monitor displays for the visualisation of surgical navigation data.

MeSH terms

  • Biopsy / instrumentation
  • Equipment Design
  • Feasibility Studies
  • Humans
  • Imaging, Three-Dimensional / instrumentation
  • Lasers
  • Phantoms, Imaging
  • Surgery, Computer-Assisted / instrumentation*
  • User-Computer Interface