Aging-induced changes in microstructure and water distribution in fresh and cooked pork in relation to water-holding capacity and cooking loss - A combined confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance relaxation study

Meat Sci. 2007 Apr;75(4):687-95. doi: 10.1016/j.meatsci.2006.09.019. Epub 2006 Nov 17.

Abstract

Confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance (LF-NMR) relaxometry were combined to characterize microstructural changes and water distribution in fresh and cooked pork during an aging period of 14 days. At day 1 (24h postmortem) a few muscle fibres, which appear swollen, were observed in both fresh and cooked meat. An identical microstructure was still apparent after 14 days, however, the number of muscle fibres showing distinguished characteristics was found to increase throughout the aging period. Hence, it was apparent that during aging the individual fibres swell and disintegrate at different rates. Development in water-holding capacity (WHC) was followed during the aging period using gravimetric methods, and an increase in the WHC in the fresh meat was observed, which resembled the amount of extramyofibrillar water measured by NMR relaxometry (T(22) population). This was consistent with the CLSM images, as a substantial increase in the number of myofibrils that appeared swollen, capable of holding more water, was observed during aging. In the cooked meat the width of the T(21c) population, reflecting the myofibrillar water in the cooked meat, was seen to decrease during the entire storage period, which corresponds to the development of a more homogeneous structure. In the CLSM data a continuous degradation during the storage period was observed, which could resemble a shift to a more homogeneous structure. Comparison of CLSM of transverse sections of fresh and cooked pork revealed a pronounced shrinkage of muscle fibres upon cooking. This resulted in large gaps between the cooked muscle fibres, which also was visible as shrinkage at the level of the individual myofibrils. This pattern was also reflected in the NMR relaxation data. The cooking-induced shrinkage of the myofibrils occurred concomitantly with a decrease in the amount of intermyofibrillar water within the individual fibre and an increase in the larger extramyofibrillar spaces between fibres, i.e. water is expelled from the myofibrillar matrix upon cooking. Accordingly, the present study demonstrated that the use of CLSM together with NMR relaxometry can provide further information on the relationship between structural characteristics of meat and resultant water distribution.