Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase

Astrobiology. 2011 Nov;11(9):883-93. doi: 10.1089/ast.2011.0650. Epub 2011 Nov 8.

Abstract

Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH₂CH or NH₂CH₂OH are the most favorable from the thermochemical point of view.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carboxylic Acids / chemistry*
  • Gases / chemistry*
  • Glycine / chemical synthesis*
  • Glycine / chemistry
  • Ions
  • Models, Chemical
  • Phase Transition*
  • Stars, Celestial / chemistry*
  • Thermodynamics

Substances

  • Carboxylic Acids
  • Gases
  • Ions
  • Glycine