Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2)

Drug Metab Pharmacokinet. 2012;27(1):85-105. doi: 10.2133/dmpk.dmpk-11-rv-098. Epub 2011 Nov 29.

Abstract

Recent pharmacogenomic/pharmacogenetic (PGx) studies have disclosed important roles for drug transporters in the human body. Changes in the functions of drug transporters due to drug/food interactions or genetic polymorphisms, for example, are associated with large changes in pharmacokinetic (PK) profiles of substrate drugs, leading to changes in drug response and side effects. This information is extremely useful not only for drug development but also for individualized treatment. Among drug transporters, the ATP-binding cassette (ABC) transporters are expressed in most tissues in humans, and play protective roles; reducing drug absorption from the gastrointestinal tract, enhancing drug elimination into bile and urine, and impeding the entry of drugs into the central nervous system and placenta. In addition to PK/pharmacodynamic (PD) issues, ABC transporters are reported as etiologic and prognostic factors (or biomarkers) for genetic disorders. Although a consensus has not yet been reached, clinical studies have demonstrated that the PGx of ABC transporters influences the overall outcome of pharmacotherapy and contributes to the pathogenesis and progression of certain disorders. This review explains the impact of PGx in ABC transporters in terms of PK/PD, focusing on P-glycoprotein and breast cancer resistance protein (BCRP).

Publication types

  • Review

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / chemistry
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics*
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism*
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters / chemistry
  • ATP-Binding Cassette Transporters / genetics*
  • ATP-Binding Cassette Transporters / metabolism*
  • Biological Transport
  • Biotransformation
  • Humans
  • Intestinal Absorption
  • Neoplasm Proteins / chemistry
  • Neoplasm Proteins / genetics*
  • Neoplasm Proteins / metabolism*
  • Pharmacokinetics*
  • Polymorphism, Genetic*
  • Protein Conformation
  • Tissue Distribution

Substances

  • ABCB1 protein, human
  • ABCG2 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • ATP Binding Cassette Transporter, Subfamily G, Member 2
  • ATP-Binding Cassette Transporters
  • Neoplasm Proteins