Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells

BMC Gastroenterol. 2012 Jan 23:12:9. doi: 10.1186/1471-230X-12-9.

Abstract

Background: Luteolin is a 3',4',5,7-tetrahydroxyflavone found in various fruits and vegetables. We have shown previously that luteolin reduces HT-29 cell growth by inducing apoptosis and cell cycle arrest. The objective of this study was to examine whether luteolin downregulates the insulin-like growth factor-I receptor (IGF-IR) signaling pathway in HT-29 cells.

Methods: In order to assess the effects of luteolin and/or IGF-I on the IGF-IR signaling pathway, cells were cultured with or without 60 μmol/L luteolin and/or 10 nmol/L IGF-I. Cell proliferation, DNA synthesis, and IGF-IR mRNA levels were evaluated by a cell viability assay, [3H]thymidine incorporation assays, and real-time polymerase chain reaction, respectively. Western blot analyses, immunoprecipitation, and in vitro kinase assays were conducted to evaluate the secretion of IGF-II, the protein expression and activation of IGF-IR, and the association of the p85 subunit of phophatidylinositol-3 kinase (PI3K) with IGF-IR, the phosphorylation of Akt and extracellular signal-regulated kinase (ERK)1/2, and cell division cycle 25c (CDC25c), and PI3K activity.

Results: Luteolin (0 - 60 μmol/L) dose-dependently reduced the IGF-II secretion of HT-29 cells. IGF-I stimulated HT-29 cell growth but did not abrogate luteolin-induced growth inhibition. Luteolin reduced the levels of the IGF-IR precursor protein and IGF-IR transcripts. Luteolin reduced the IGF-I-induced tyrosine phosphorylation of IGF-IR and the association of p85 with IGF-IR. Additionally, luteolin inhibited the activity of PI3K activity as well as the phosphorylation of Akt, ERK1/2, and CDC25c in the presence and absence of IGF-I stimulation.

Conclusions: The present results demonstrate that luteolin downregulates the activation of the PI3K/Akt and ERK1/2 pathways via a reduction in IGF-IR signaling in HT-29 cells; this may be one of the mechanisms responsible for the observed luteolin-induced apoptosis and cell cycle arrest.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / metabolism*
  • Adenocarcinoma / pathology
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Colonic Neoplasms / metabolism*
  • Colonic Neoplasms / pathology
  • Dose-Response Relationship, Drug
  • Down-Regulation / drug effects*
  • Humans
  • Insulin-Like Growth Factor I / pharmacology
  • Insulin-Like Growth Factor II / metabolism*
  • Luteolin / pharmacology*
  • MAP Kinase Signaling System / drug effects
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Receptor, IGF Type 1 / metabolism*
  • Signal Transduction / drug effects*

Substances

  • Insulin-Like Growth Factor I
  • Insulin-Like Growth Factor II
  • Phosphatidylinositol 3-Kinases
  • Receptor, IGF Type 1
  • Proto-Oncogene Proteins c-akt
  • Luteolin