2[Mn(acacen)]+ + 1[Fe(CN)5NO]- polynuclear heterobimetallic coordination compounds of different dimensionality in the solid state

Dalton Trans. 2012 Apr 14;41(14):4100-6. doi: 10.1039/c2dt11983h. Epub 2012 Jan 30.

Abstract

Depending on the synthetic conditions, five heterometallic Mn(III)Fe(II) polynuclear compounds with the same ratio of constituents, 2[Mn(acacen)](+)/[Fe(CN)(5)NO](2-), of different nuclearity and dimensionality (0D, 1D, 2D) were isolated. A [Mn(acacen)MeOH](2)[Fe(CN)(5)NO]·1.5MeOH, 1 complex has been prepared by reaction of Mn(III)/Schiff base (SB) complex, [Mn(acacen)Cl] (H(2)acacen is N,N'-ethylenebis(acetylacetoneimine)) with sodium nitroprusside (NP). Single crystal X-ray diffraction analyses reveal that crystallization of 1 from coordinating or non-coordinating solvents results in different coordination polynuclear materials: from C(2)H(5)OH [{Mn(acacen)H(2)O}(2)Fe(CN)(5)NO]·C(2)H(5)OH, 2, a trinuclear complex is formed; from CH(3)CN [{Mn(acacen)H(2)O}(4)Fe(CN)(5)NO][Fe(CN)(5)NO]·4CH(3)CN, an ionic compound with a pentanuclear bimetallic cation is formed 3; from i-C(3)H(7)OH [{Mn(acacen)}(2)(i-PrOH)Fe(CN)(5)NO](n), a coordination chain polymer 4 is formed; from toluene [{Mn(acacen)}(2)Fe(CN)(5)NO](n), a layered network 5 is formed. As the magnetic measurements show, for all compounds the weak interaction between Mn(III)S = 2 spins through the NP bridge is antiferromagnetic and exhibits no significant photoactivity.