Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features

BMC Genomics. 2012 Apr 26:13:152. doi: 10.1186/1471-2164-13-152.

Abstract

Background: Epigenetic modifications, transcription factor (TF) availability and differences in chromatin folding influence how the genome is interpreted by the transcriptional machinery responsible for gene expression. Enhancers buried in non-coding regions are found to be associated with significant differences in histone marks between different cell types. In contrast, gene promoters show more uniform modifications across cell types. Here we used histone modification and chromatin-associated protein ChIP-Seq data sets in mouse embryonic stem (ES) cells as well as genomic features to identify functional enhancer regions. Using co-bound sites of OCT4, SOX2 and NANOG (co-OSN, validated enhancers) and co-bound sites of MYC and MYCN (limited enhancer activity) as enhancer positive and negative training sets, we performed multinomial logistic regression with LASSO regularization to identify key features.

Results: Cross validations reveal that a combination of p300, H3K4me1, MED12 and NIPBL features to be top signatures of co-OSN regions. Using a model from 10 signatures, 83% of top 1277 putative 1 kb enhancer regions (probability greater than or equal to 0.8) overlapped with at least one TF peak from 7 mouse ES cell ChIP-Seq data sets. These putative enhancers are associated with increased gene expression of neighbouring genes and significantly enriched in multiple TF bound loci in agreement with combinatorial models of TF binding. Furthermore, we identified several motifs of known TFs significantly enriched in putative enhancer regions compared to random promoter regions and background. Comparison with an active H3K27ac mark in various cell types confirmed cell type-specificity of these enhancers.

Conclusions: The top enhancer signatures we identified (p300, H3K4me1, MED12 and NIPBL) will allow for the identification of cell type-specific enhancer regions in diverse cell types.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Cycle Proteins
  • Cell Line
  • Chromatin / metabolism*
  • Chromatin Immunoprecipitation
  • E1A-Associated p300 Protein / genetics
  • E1A-Associated p300 Protein / metabolism
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / metabolism*
  • Enhancer Elements, Genetic*
  • Gene Expression Regulation
  • Genome*
  • Histones / genetics
  • Histones / metabolism
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics
  • Kruppel-Like Transcription Factors / metabolism
  • Mediator Complex / genetics
  • Mediator Complex / metabolism
  • Mice
  • Models, Genetic
  • Octamer Transcription Factor-3 / genetics
  • Octamer Transcription Factor-3 / metabolism
  • Promoter Regions, Genetic
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism
  • SOXB1 Transcription Factors / genetics
  • SOXB1 Transcription Factors / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Cell Cycle Proteins
  • Chromatin
  • Histones
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • Med12 protein, mouse
  • Mediator Complex
  • Nipbl protein, mouse
  • Octamer Transcription Factor-3
  • Proto-Oncogene Proteins c-myc
  • SOXB1 Transcription Factors
  • Transcription Factors
  • E1A-Associated p300 Protein
  • Ep300 protein, mouse