Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study

Chem Phys Lipids. 2012 Apr;165(3):348-61. doi: 10.1016/j.chemphyslip.2012.02.009.

Abstract

An analysis of electron spin resonance (ESR) spectra from compositions along the liquid-ordered (L(o)) and liquid-disordered (L(d)) coexistence curve from the brain-sphingomyelin/dioleoylphosphatidylcholine/cholesterol (SPM/DOPC/Chol) model lipid system was performed to characterize the dynamic structure on a molecular level of these coexisting phases. We obtained 200 continuous-wave ESR spectra from glycerophospholipid spin-labels labeled at the 5, 7, 10, 12, 14, and 16 carbon positions of the 2nd acyl chain, a sphingomyelin spin-label labeled at the 14 carbon position of the amide-linked acyl chain, a headgroup-labeled glycerophospholipid, a headgroup-labeled sphingomyelin, and the cholesterol analogue spin-label cholestane all within multi-lamellar vesicle suspensions at room temperature. The spectra were analyzed using the MOMD (microscopic-order macroscopic-disorder) model to provide the rotational diffusion rates and order parameters which characterize the local molecular dynamics in these phases. The analysis also incorporated the known critical point and invariant points of the neighboring three-phase triangle along the coexistence curve. The variation in the molecular dynamic structures of coexisting L(o) and L(d) compositions as one moves toward the critical point is discussed. Based on these results, a molecular model of the L(o) phase is proposed incorporating the "condensing effect" of cholesterol on the phospholipid acyl chain dynamics and ordering and the “umbrella model” of the phospholipid headgroup dynamics and ordering.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell Membrane / chemistry*
  • Electron Spin Resonance Spectroscopy
  • Membrane Lipids / chemistry*
  • Spin Labels*

Substances

  • Membrane Lipids
  • Spin Labels