The biological effects and possible modes of action of nanosilver

Rev Environ Contam Toxicol. 2013:223:81-106. doi: 10.1007/978-1-4614-5577-6_4.

Abstract

Novel physicochemical and biological properties have led to a versatile spectrum of applications for nanosized silver particles. Silver nanoparticles are applied primarily for their antimicrobial effects, and may variety of commercially available products have emerged. To better predict and prevent possible environmental impacts from silver nanoparticles that are derived from increasing production volumes and environmental release, more data on the biological effects are needed on appropriate model organisms. We examined the literature that addressed the adverse effects of silver nanoparticles on different levels of biological integration, including in vitro and in vivo test systems. Results of in vitro studies indicate a dose-dependent programmed cell death included by oxidative stress as main possible pathway of toxicity. Furthermore, silver nanoparticles may affect cellular enzymes by interference with free thiol groups and mimicry of endogenous ions. Similar mechanisms may apply for antibacterial effects produced by nonasilver. These effects are primary from the interference nanosilver has with bacterial cell membranes. Few in vivo studies have been performed to evaluated the toxic mode of action of nanosilver or to provide evidence for oxidative stress as an important mechanism of nanosilver toxicity. Organisms that are most acutely sensitive to nanosilver toxicity are the freshwater filter-freeding organisms. Both in vitro and in vivo studies have demonstrated tha silver ions released from nanoparticle surface contribute to the toxicity, and, indeed, some findings indicated a unique nanoparticles effect. For an adequate evaluation of the environmental impact of nanosilver, greater emphasis should be placed on combining mechanistic investigations that are performed in vitro, with results obtained in in vivo test systems. Future in vivo test system studies should emphasize long-term exposure scenarios. Moreover, the dietary uptake of silver nanoparticles and the potential to bioaccumulate through the food web should be examined in detail.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology*
  • In Vitro Techniques
  • Metal Nanoparticles* / toxicity
  • Silver / chemistry*
  • Silver / pharmacology

Substances

  • Anti-Bacterial Agents
  • Silver