Compound-specific isotope analysis of benzotriazole and its derivatives

Anal Bioanal Chem. 2013 Mar;405(9):2843-56. doi: 10.1007/s00216-012-6526-1. Epub 2012 Dec 9.

Abstract

Compound-specific isotope analysis (CSIA) is an important tool for the identification of contaminant sources and transformation pathways, but it is rarely applied to emerging aquatic micropollutants owing to a series of instrumental challenges. Using four different benzotriazole corrosion inhibitors and its derivatives as examples, we obtained evidence that formation of organometallic complexes of benzotriazoles with parts of the instrumentation impedes isotope analysis. Therefore, we propose two strategies for accurate [Formula: see text]C and [Formula: see text]N measurements of polar organic micropollutants by gas chromatography isotope ratio mass spectrometry (GC/IRMS). Our first approach avoids metallic components and uses a Ni/Pt reactor for benzotriazole combustion while the second is based on the coupling of online methylation to the established GC/IRMS setup. Method detection limits for on-column injection of benzotriazole, as well as its 1-CH[Formula: see text]-, 4-CH[Formula: see text]-, and 5-CH[Formula: see text]-substituted species were 0.1-0.3 mM and 0.1-1.0 mM for δ(13)C and δ(15)N analysis respectively, corresponding to injected masses of 0.7-1.8 nmol C and 0.4-3.0 nmol N, respectively. The Ni/Pt reactor showed good precision and was very long-lived ([Formula: see text]1000 successful measurements). Coupling isotopic analysis to offline solid-phase extraction enabled benzotriazole-CSIA in tap water, wastewater treatment effluent, activated sludge, and in commercial dishwashing products. A comparison of [Formula: see text]C and [Formula: see text]N values from different benzotriazoles and benzotriazole derivatives, both from commercial standards and in dishwashing detergents, reveals the potential application of the proposed method for source apportionment.