The bacterial and cellular determinants controlling the recruitment of mTOR to the Salmonella-containing vacuole

Biol Open. 2012 Dec 15;1(12):1215-25. doi: 10.1242/bio.20122840. Epub 2012 Oct 4.

Abstract

Bacterial invasion results in the rapid induction of an acute state of cytosolic amino acid (AA) starvation, provoked by host membrane damage. Bacteria-induced AA starvation, in turn, down-regulates mTOR signaling while triggering autophagy and the integrated stress response pathway dependent on GCN2, eIF2α and ATF3. In Salmonella-infected cells, we now demonstrate that the host AA starvation response program depended on the Salmonella pathogenicity island (SPI)-1, the activity of which was required to damage the Salmonella-containing vacuole (SCV) in the early stage of infection. At a later stage (3-4 hour post-infection), the progressive recruitment of mTOR to the surface of the SCV appeared to be independent of the activity of SPI-2 and of SCV positioning in the cell. Instead, mTOR localization to the SCV required the activity of host AA transporters SLC1A5, SLC3A2 and SLC7A5, resulting in bacterial escape from autophagy. These results expand our understanding of the mechanisms underlying the AA starvation response in Salmonella-infected cells.

Keywords: Amino acid starvation; Salmonella; mTOR.