Protein targets of thioacetamide metabolites in rat hepatocytes

Chem Res Toxicol. 2013 Apr 15;26(4):564-74. doi: 10.1021/tx400001x. Epub 2013 Mar 20.

Abstract

Thioacetamide (TA) has long been known as a hepatotoxicant whose bioactivation requires S-oxidation to thioacetamide S-oxide (TASO) and then to the very reactive S,S-dioxide (TASO2). The latter can tautomerize to form acylating species capable of covalently modifying cellular nucleophiles including phosphatidylethanolamine (PE) lipids and protein lysine side chains. Isolated hepatocytes efficiently oxidize TA to TASO but experience little covalent binding or cytotoxicity because TA is a very potent inhibitor of the oxidation of TASO to TASO2. However, hepatocytes treated with TASO show extensive covalent binding to both lipids and proteins accompanied by extensive cytotoxicity. In this work, we treated rat hepatocytes with [(14)C]-TASO and submitted the mitochondrial, microsomal, and cytosolic fractions to 2DGE, which revealed a total of 321 radioactive protein spots. To facilitate the identification of target proteins and adducted peptides, we also treated cells with a mixture of TASO/[(13)C2D3]-TASO. Using a combination of 1DGE- and 2DGE-based proteomic approaches, we identified 187 modified peptides (174 acetylated, 50 acetimidoylated, and 37 in both forms) from a total of 88 nonredundant target proteins. Among the latter, 57 are also known targets of at least one other hepatotoxin. The formation of both amide- and amidine-type adducts to protein lysine side chains is in contrast to the exclusive formation of amidine-type adducts with PE phospholipids. Thiobenzamide (TB) undergoes the same two-step oxidative bioactivation as TA, and it also gives rise to both amide and amidine adducts on protein lysine side chains but only amidine adducts to PE lipids. Despite their similarity in functional group chemical reactivity, only 38 of 62 known TB target proteins are found among the 88 known targets of TASO. The potential roles of protein modification by TASO in triggering cytotoxicity are discussed in terms of enzyme inhibition, protein folding, and chaperone function, and the emerging role of protein acetylation in intracellular signaling and the regulation of biochemical pathways.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cells, Cultured
  • Cytosol / drug effects
  • Cytosol / metabolism
  • Hepatocytes / drug effects*
  • Hepatocytes / metabolism
  • Male
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / metabolism
  • Mitochondria, Liver / drug effects
  • Mitochondria, Liver / metabolism
  • Proteins / metabolism*
  • Proteomics
  • Rats
  • Rats, Sprague-Dawley
  • Thioacetamide / analogs & derivatives*
  • Thioacetamide / toxicity

Substances

  • Proteins
  • Thioacetamide
  • thioacetamide-S-oxide