Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize

Glob Chang Biol. 2013 May;19(5):1572-84. doi: 10.1111/gcb.12155. Epub 2013 Mar 5.

Abstract

Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere-atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2 -saturated at current CO2 concentrations ([CO2 ]) and the primary response of maize to elevated [CO2 ] is decreased stomatal conductance (gs ). If maize photosynthesis is not stimulated in elevated [CO2 ], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative to that previously reported in soybean, a C3 species. The objective of this study is to quantify the impact of elevated [CO2 ] on canopy energy and water fluxes of maize (Zea mays). Maize was grown under ambient and elevated [CO2 ] (550 μmol mol(-1) during 2004 and 2006 and 585 μmol mol(-1) during 2010) using Free Air Concentration Enrichment (FACE) technology at the SoyFACE facility in Urbana, Illinois. Maize ET was determined using a residual energy balance approach based on measurements of sensible (H) and soil heat fluxes, and net radiation. Relative to control, elevated [CO2 ] decreased maize ET (7-11%; P < 0.01) along with lesser soil moisture depletion, while H increased (25-30 W m(-2) ; P < 0.01) along with higher canopy temperature (0.5-0.6 °C). This reduction in maize ET in elevated [CO2 ] is approximately half that previously reported for soybean. A partitioning analysis showed that transpiration contributed less to total ET for maize compared to soybean, indicating a smaller role of stomata in dictating the ET response to elevated [CO2 ]. Nonetheless, both maize and soybean had significantly decreased ET and increased H, highlighting the critical role of elevated [CO2 ] in altering future hydrology and climate of the region that is extensively cropped with these species.

MeSH terms

  • Carbon Dioxide / metabolism*
  • Circadian Rhythm
  • Climate Change
  • Energy Metabolism*
  • Illinois
  • Photosynthesis
  • Plant Leaves / physiology
  • Plant Transpiration*
  • Seasons
  • Soil / chemistry
  • Time Factors
  • Water / metabolism*
  • Zea mays / physiology*

Substances

  • Soil
  • Water
  • Carbon Dioxide