The involvement of NRF2 in lung cancer

Oxid Med Cell Longev. 2013:2013:746432. doi: 10.1155/2013/746432. Epub 2013 Mar 18.

Abstract

Nuclear factor, erythroid-derived 2, like 2 (NRF2) is a key regulator of antioxidants and cellular stress responses. The role of NRF2 in pulmonary neoplasia, a diverse disease for which few biomarkers exist, is complicated and appears to depend on several main factors including the existence of activating mutations in NRF2 and/or loss of function mutations in KEAP1 and the stage of carcinogenesis studied, particularly in the mouse models tested. Therapeutic strategies for lung cancer targeting NRF2 have observed mixed results, both anti- and protumorigenic effects; however, these differences seem to reflect the mutation status of NRF2 or KEAP1. In this paper, we will discuss the studies on human NRF2 and the mechanisms proposed, several mouse models using various mice deficient in NRF2, as well as xenograft models, and the chemotherapeutic strategies using the NRF2 pathway.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / therapeutic use
  • Humans
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Kelch-Like ECH-Associated Protein 1
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • Mutation
  • NF-E2-Related Factor 2 / antagonists & inhibitors
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism*

Substances

  • Antineoplastic Agents
  • Intracellular Signaling Peptides and Proteins
  • KEAP1 protein, human
  • Kelch-Like ECH-Associated Protein 1
  • NF-E2-Related Factor 2