Protein trans-splicing of multiple atypical split inteins engineered from natural inteins

PLoS One. 2013 Apr 8;8(4):e59516. doi: 10.1371/journal.pone.0059516. Print 2013.

Abstract

Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11-12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85-100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ~1.7 × 10(-4) s(-1) to ~3.8 × 10(-4) s(-1), which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Escherichia coli / genetics
  • Inteins / genetics*
  • Molecular Sequence Data
  • Protein Engineering / methods*
  • Proteins / chemistry*
  • Proteins / genetics*
  • Proteins / metabolism
  • Trans-Splicing*

Substances

  • Proteins

Grants and funding

This work was supported by grants to Q.M. from the National High Technology Research and Development Program 863 (NO 2006AA03Z451), the National Natural Science Foundation of China (NO 31070698) and the Shanghai key projects of basic research (NO 10JC1400300); by grants to Y.L. from the National Natural Science Foundation of China (NO 30800186) and the Ph.D. Programs Foundation of Ministry of Education of China (NO 200802551026); and by a grant to X.-Q.L. from the Natural Science and Engineering Research Council of Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Funders’ websites include: http://www.nsfc.gov.cn/Portal0/default152.htmhttp://www.863.gov.cn/http://www.stcsm.gov.cn/structure/index.htmhttp://www.cutech.edu.cn/cn/index.htmhttp://www.nserc-crsng.gc.ca/.