Effects of 8 chemical and bacterial additives on the quality of corn silage

J Dairy Sci. 2013 Sep;96(9):5836-43. doi: 10.3168/jds.2013-6691. Epub 2013 Jun 28.

Abstract

This project aimed to evaluate the effects 8 additives on the fermentation, dry matter (DM) losses, nutritive value, and aerobic stability of corn silage. Corn forage harvested at 31% DM was chopped (10mm) and treated with (1) deionized water (control); (2) Buchneri 500 (BUC; 1×10(5) cfu/g of Pediococcus pentosaceus 12455 and 4×10(5) cfu/g of Lactobacillus buchneri 40788; Lallemand Animal Nutrition, Milwaukee, WI); (3) sodium benzoate (BEN; 0.1% of fresh forage); (4) Silage Savor acid mixture (SAV: 0.1% of fresh forage; Kemin Industries Inc., Des Moines, IA); (5) 1×10(6) cfu/g of Acetobacter pasteurianus-ATCC 9323; (6) 1×10(6) cfu/g of Gluconobacter oxydans-ATCC 621; (7) Ecosyl 200T (1×10(5) cfu/g of Lactobacillus plantarum MTD/1; Ecosyl Products Inc., Byron, IL); (8) Silo-King WS (1.5×10(5) cfu/g of L. plantarum, P. pentosaceus and Enterococcus faecium; Agri-King, Fulton, IL); and (9) Biomax 5 (BIO; 1×10(5) cfu/g of L. plantarum PA-28 and K-270; Chr. Hansen Animal Health and Nutrition, Milwaukee, WI). Treated forage was ensiled in quadruplicate in mini silos at a density of 172 kg of DM/m(3) for 3 and 120 d. After 3 d of ensiling, the pH of all silages was below 4 but ethanol concentrations were least in BEN silage (2.03 vs. 3.24% DM) and lactic acid was greatest in SAV silage (2.97 vs. 2.51% DM). Among 120-d silages, additives did not affect DM recovery (mean=89.8% ± 2.27) or in vitro DM digestibility (mean=71.5% ± 0.63). The SAV silage had greater ammonia-N (0.85 g/kg of DM) and butyric acid (0.22 vs. 0.0% DM) than other treatments. In contrast, BEN and Silo-King silages had the least ammonia-N concentration and had no butyric acid. The BEN and A. pasteurianus silages had the lowest pH (3.69) and BEN silage had the least ethanol (1.04% DM) and ammonia nitrogen (0.64 g/kg DM) concentrations, suggesting that fermentation was more extensive and protein degradation was less in BEN silages. The BUC and BIO silages had greater acetic acid concentrations than control silages (3.19 and 3.19 vs. 2.78% DM), but yeast counts did not differ. Aerobic stability was increased by 64% by BUC (44.30 h) and by 35% by BEN (36.49 h), but other silages had similar values (27.0±1.13 h).

Keywords: aerobic stability; chemical additive; corn silage; silage inoculant.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetobacter / metabolism
  • Ammonia / analysis
  • Dairying / methods
  • Enterococcus faecium / metabolism
  • Ethanol / analysis
  • Food Additives / pharmacology
  • Gluconobacter oxydans / metabolism
  • Hydrogen-Ion Concentration
  • Lactic Acid / analysis
  • Lactobacillus / metabolism
  • Lactobacillus plantarum / metabolism
  • Pediococcus / metabolism
  • Silage / analysis
  • Silage / microbiology
  • Silage / standards*
  • Zea mays*

Substances

  • Food Additives
  • Lactic Acid
  • Ethanol
  • Ammonia