Global migration can lead to stronger spatial selection than local migration

J Stat Phys. 2013 May 1;151(3-4):637-653. doi: 10.1007/s10955-012-0631-6.

Abstract

The outcome of evolutionary processes depends on population structure. It is well known that mobility plays an important role in affecting evolutionary dynamics in group structured populations. But it is largely unknown whether global or local migration leads to stronger spatial selection and would therefore favor to a larger extent the evolution of cooperation. To address this issue, we quantify the impacts of these two migration patterns on the evolutionary competition of two strategies in a finite island model. Global migration means that individuals can migrate from any one island to any other island. Local migration means that individuals can only migrate between islands that are nearest neighbors; we study a simple geometry where islands are arranged on a one-dimensional, regular cycle. We derive general results for weak selection and large population size. Our key parameters are: the number of islands, the migration rate and the mutation rate. Surprisingly, our comparative analysis reveals that global migration can lead to stronger spatial selection than local migration for a wide range of parameter conditions. Our work provides useful insights into understanding how different mobility patterns affect evolutionary processes.

Keywords: Evolutionary dynamics; Evolutionary game theory; Mathematical biology; Population structure.