Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers

Acta Biomater. 2013 Dec;9(12):9414-22. doi: 10.1016/j.actbio.2013.07.029. Epub 2013 Aug 2.

Abstract

Transplanted retinal pigment epithelium (RPE) cells hold promise for treatment of age-related macular degeneration (AMD) and Stargardt disease (SD), but it is conceivable that the degenerated host Bruch's membrane (BM) as a natural substrate for RPE might not optimally support transplanted cell survival with correct cellular organization. We fabricated novel ultrathin three-dimensional (3-D) nanofibrous membranes from collagen type I and poly(lactic-co-glycolic acid) (PLGA) by an advanced clinical-grade needle-free electrospinning process. The nanofibrillar 3-D networks closely mimicked the fibrillar architecture of the native inner collagenous layer of human BM. Human RPE cells grown on our nanofibrous membranes bore a striking resemblance to native human RPE. They exhibited a correctly orientated monolayer with a polygonal cell shape and abundant sheet-like microvilli on their apical surfaces. RPE cells built tight junctions and expressed RPE65 protein. Flat 2-D PLGA film and cover glass as controls delivered inferior RPE layers. Our nanofibrous membranes may imitate the natural BM to such extent that they allow for the engineering of an in vivo-like human RPE monolayer that maintains the natural biofunctional characteristics. Such ultrathin membranes may provide a promising vehicle for a functional RPE cell monolayer implantation in the subretinal space in patients with AMD or SD.

Keywords: Macular degeneration; Nanofibers; Needle-free electrospinning; Retinal pigment epithelial transplantation; Three-dimensional membrane.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bruch Membrane / cytology*
  • Cell Adhesion / drug effects
  • Cell Proliferation / drug effects
  • Cell Shape / drug effects
  • Collagen / metabolism
  • Collagen / ultrastructure
  • Epithelial Cells / cytology*
  • Epithelial Cells / drug effects
  • Epithelial Cells / ultrastructure
  • Humans
  • Immunohistochemistry
  • Lactic Acid / pharmacology
  • Nanofibers / chemistry*
  • Nanofibers / ultrastructure
  • Phagocytosis / drug effects
  • Polyglycolic Acid / pharmacology
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Retinal Pigment Epithelium / cytology*
  • Tissue Engineering / methods*
  • Zonula Occludens-1 Protein / metabolism
  • cis-trans-Isomerases / metabolism

Substances

  • Zonula Occludens-1 Protein
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • Collagen
  • retinoid isomerohydrolase
  • cis-trans-Isomerases