Unequivocal determination of site-specific protein disulfide bond reduction potentials by top-down FTICR MS: characterization of the N- and C-terminal redox-active sites in human thioredoxin 1

Anal Chem. 2013 Oct 1;85(19):9164-72. doi: 10.1021/ac401850p. Epub 2013 Sep 16.

Abstract

We report the reliable determination of equilibrium protein disulfide bond reduction potentials (E°') by isotope-coded cysteine alkylation coupled with top-down Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). This technique enables multiple redox-active sites to be characterized simultaneously and unambiguously without the need for proteolysis or site-directed mutagenesis. Our model system was E. coli thioredoxin, and we determined E°' for its CGPC active-site disulfide as -280 mV in accord with literature values. E°' for the homologous disulfide in human thioredoxin 1 (Trx1) was determined as -281 mV, a value considerably more negative than the previously reported -230 mV. We also observed S-glutathionylation of Trx1 and localized that redox modification to Cys72; E°' for the intermolecular disulfide was determined as -186 mV. Intriguingly, that value corresponds to the intracellular glutathione/glutathione disulfide (GSH/GSSG) potential at the redox boundary between cellular differentiation and apoptosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Catalytic Domain
  • Cyclotrons*
  • Disulfides / chemistry*
  • Escherichia coli
  • Fourier Analysis*
  • Humans
  • Mass Spectrometry
  • Oxidation-Reduction
  • Thioredoxins / chemistry*

Substances

  • Disulfides
  • Thioredoxins