VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius

Int J Food Microbiol. 2013 Sep 16;166(3):479-86. doi: 10.1016/j.ijfoodmicro.2013.07.027. Epub 2013 Aug 7.

Abstract

Ochratoxin A (OTA) is a mycotoxin with nephrotoxic, teratogenic and immunotoxic properties which represents a serious risk for human and animal health. Aspergillus carbonarius is considered the main OTA-producing species in grapes and products such as raisins, wine or juices, although it has also been isolated from coffee, cocoa and cereals. Till now not much information is available about regulatory mechanisms of OTA production by A. carbonarius. A better understanding of how environmental factors influence OTA production and which genes are involved in its regulation could help us design new control strategies. In this study, we have evaluated the role of VeA and LaeA transcriptional factors, which have been shown to regulate secondary metabolism in response to light in A. carbonarius. To this aim, veA and laeA genes were deleted in an ochratoxigenic A. carbonarius strain by targeted gene replacement using Agrobacterium tumefaciens-mediated transformation. Loss of veA and laeA in A. carbonarius yields to an organism with slight differences in vegetative growth but a strong reduction in conidial production. A drastic decrease of OTA production that ranged from 68.5 to 99.4% in ΔveA and ΔlaeA null mutants was also observed, which was correlated with a downregulation of a nonribosomal peptide synthetase involved in OTA biosynthesis. These findings suggest that VeA and LaeA have an important role regulating conidiation and OTA biosynthesis in response to light in A. carbonarius in a similar way to other fungi where functions of VeA and LaeA have been previously described. This is the first report of a transcriptional factor governing the production of OTA by A. carbonarius.

Keywords: Aspergillus carbonarius; Conidiation; LaeA; Light; Ochratoxin production; VeA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aspergillus / genetics*
  • Aspergillus / radiation effects
  • Food Microbiology*
  • Gene Deletion
  • Gene Expression Regulation, Fungal*
  • Genes, Fungal / genetics
  • Light
  • Mutation
  • Ochratoxins / biosynthesis*
  • Spores, Fungal
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism*

Substances

  • Ochratoxins
  • Transcription Factors
  • ochratoxin A