EBSD study of angular deviations from the Goss component in grain-oriented electrical steels

Micron. 2013 Nov-Dec:54-55:43-51. doi: 10.1016/j.micron.2013.08.003. Epub 2013 Sep 12.

Abstract

The magnetic properties of grain-oriented (GO) electrical steels strongly depend on the distribution of the α and β angles, i.e., the deviations of the easy magnetisation <100> from the rolling direction (RD) in the rolling plane and out of the rolling plane, respectively. However, most Electron Backscatter Diffraction (EBSD) studies consider the standard Goss deviation angle, which includes the rotation of the (110) plane about the RD. Therefore, in the present work, a new procedure is demonstrated for deriving the α and β angles from EBSD mappings to obtain a quantitative texture characterisation in line with the magnetic properties. This procedure is later applied to 37 GO steels after secondary recrystallisation that exhibit a wide range of permeability levels. The relation between the texture and the polarisation at 800A/m (J800) that is measured in the present study by EBSD is compared to the one that has been determined in previous papers with optical goniometers and X-ray diffraction techniques, and this relation is subsequently used to define a relevant parameter to describe the orientation quality of the grains. The results indicate that the average angle of the α and β deviations is a relevant deviation parameter for the characterisation of grain orientations. Finally, it is demonstrated that the combination of the quantitative correlation between polarisation and texture with the orientation imaging of EBSD offers the possibilities of both studying the crystallographic environment of highly oriented grains in the primary recrystallised matrix for the production of high-permeability steels and evaluating the spatial distribution of the angular deviations in GO steels after secondary recrystallisation.

Keywords: Electron Backscatter Diffraction; Grain-oriented electrical steels; Magnetic properties; Texture.