Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr

Planta. 1990 Jun;181(3):399-405. doi: 10.1007/BF00195894.

Abstract

The effects of phosphorus nutrition on various aspects of photosynthetic metabolism have been examined for soybean plants (Glycine max) grown in growth chambers. Orthophosphate was supplied at two levels in 0.5-strength Hoagland's solution. At the end of the 19-d growth period, plants grown at 10 μM KH2PO4 (low-P plants) had undergone a 40% drop in net CO2 exchange (averaged over a 16-h light period), as compared with control plants grown with 200 μM KH2PO4. Low-P resulted in reductions in the initial activities of five, and in the total activities of seven, Calvin-cycle enzymes. Notable exceptions were the initial and total activities of chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) which were increased by 85 and 53%, respectively, by low-P. Low-P decreased leaf 3-phosphoglycerate (PGA) levels most (by 80%), ribulose-1,5-bis-phosphate (RuBP) less (by 47%) while triose-phosphate (TP) was not significantly changed. The results indicate that photosynthetic CO2-fixation in low-P plants was limited more by RuBP regeneration than by ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) activity. Ribulose-1,5-bisphosphate regeneration in low-P plants did not appear to be limited by ATP and-or NADPH supply because ATP/ADP and NADPH/ NADP(+) ratios were increased by 60 and 37%, respectively, by low-P, and because TP/PGA ratios were higher in low-P plants. Low-P may diminish RuBP regeneration, and hence photosynthesis, by reducing Calvin-cycle enzyme activity, in particular, the initial activity of ribulose-5-phosphate kinase (EC 2.7.1.19) (44% reduction), and by enhancing the flux of carbon into starch biosynthesis.