Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework

Stud Mycol. 2013 Sep 30;76(1):31-49. doi: 10.3114/sim0020.

Abstract

The order Botryosphaeriales represents several ecologically diverse fungal families that are commonly isolated as endophytes or pathogens from various woody hosts. The taxonomy of members of this order has been strongly influenced by sequence-based phylogenetics, and the abandonment of dual nomenclature. In this study, the phylogenetic relationships of the genera known from culture are evaluated based on DNA sequence data for six loci (SSU, LSU, ITS, EF1, BT, mtSSU). The results make it possible to recognise a total of six families. Other than the Botryosphaeriaceae (17 genera), Phyllostictaceae (Phyllosticta) and Planistromellaceae (Kellermania), newly introduced families include Aplosporellaceae (Aplosporella and Bagnisiella), Melanopsaceae (Melanops), and Saccharataceae (Saccharata). Furthermore, the evolution of morphological characters in the Botryosphaeriaceae were investigated via analysis of phylogeny-trait association. None of the traits presented a significant phylogenetic signal, suggesting that conidial and ascospore pigmentation, septation and appendages evolved more than once in the family. Molecular clock dating on radiations within the Botryosphaeriales based on estimated mutation rates of the rDNA SSU locus, suggests that the order originated in the Cretaceous period around 103 (45-188) mya, with most of the diversification in the Tertiary period. This coincides with important periods of radiation and spread of the main group of plants that these fungi infect, namely woody Angiosperms. The resulting host-associations and distribution could have influenced the diversification of these fungi.

Taxonomic novelties: New families - Aplosporellaceae Slippers, Boissin & Crous, Melanopsaceae Phillips, Slippers, Boissin & Crous, Saccharataceae Slippers, Boissin & Crous.

Keywords: Aplosporellaceae; Melanopsaceae; Phyllostictaceae; Planistromellaceae; Saccharataceae; molecular dating; systematics.