Evaluation of Jatropha curcas Linn. leaf extracts for its cytotoxicity and potential to inhibit hemagglutinin protein of influenza virus

Indian J Virol. 2013 Sep;24(2):220-6. doi: 10.1007/s13337-013-0154-z. Epub 2013 Sep 24.

Abstract

Influenza is a serious respiratory illness which can be debilitating and cause complications that lead to hospitalization and death. Although influenza vaccine can prevent influenza virus infection, the only therapeutic options to treat influenza virus infection are antiviral agents. Given temporal and geographic changes and the shifts in antiviral drug resistance among influenza viruses, it is time to consider natural antiviral agents against influenza virus. Jatropha curcas is known for various medicinal uses. Its antimicrobial, anti-cancer and anti-HIV activity has been well recognized. Because of its broad-spectrum activity, we investigated aqueous and methanol leaf extracts for cytotoxicity and its potential to inhibit hemagglutinin protein of influenza virus. The bioactive compounds from leaf extracts were characterized by high-performance thinlayer chromatography which revealed the presence of major phytochemicals including flavonoids, saponins and tannins. The cytotoxic concentration 50 for aqueous and methanol extracts were determined using trypan blue dye exclusion assay. Inhibition of hemagglutinin protein was assessed using minimal cytotoxic concentrations of the extracts and 10(2.5) TCID50 (64 HA titre) of the Influenza A (H1N1) virus with different exposure studies using hemagglutination assay. Aqueous and methanol extracts were found to be non toxic to Madin darby canine kidney cells below concentration of 15.57 and 33.62 mg/mL for respectively. Inhibition of hemagglutinin was studied using reducing hemagglutination titre which confirmed that the J. curcas extracts have direct effect on the process of virus adsorption leading to its inhibition. Our results provide the information which shows the potential of Jatropha extracts in the treatment of influenza A (H1N1) virus infection. With an established reduced toxicity and prevention of infection by inhibiting hemagglutinin protein, these extracts and its derivatives may be further developed as broad spectrum anti-influenza drugs for prevention and treatment of infections by different types of influenza viruses with further mechanistic studies on anti-influenza.

Keywords: Antiviral; Cytotoxicity; Hemagglutination; Influenza; Jatropha curcas.