Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering?

Tissue Eng Part B Rev. 2014 Oct;20(5):477-91. doi: 10.1089/ten.TEB.2013.0638. Epub 2014 Feb 27.

Abstract

Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bone and Bones / physiology*
  • Graphite / chemistry*
  • Humans
  • Nanostructures / chemistry*
  • Prostheses and Implants*
  • Surface Properties
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • Graphite