Cryopreservation of porcine spermatogonial stem cells by slow-freezing testis tissue in trehalose

J Anim Sci. 2014 Mar;92(3):984-95. doi: 10.2527/jas.2013-6843. Epub 2014 Feb 6.

Abstract

Spermatogonial stem cells provide the foundation for continued adult spermatogenesis and their manipulation can facilitate assisted reproductive technologies or the development of transgenic animals. Because the pig is an important agricultural and biomedical research animal, the development of practical application techniques to manipulate the pig Spermatogonial stem cell is needed. The ability to preserve porcine Spermatogonial stem cell or testis tissue long term is one of these fundamental techniques. The objective of this study was to optimize methods to cryopreserve porcine Spermatogonial stem cell when freezing testis cells or testis tissue. To identify the most efficient cryopreservation technique, porcine testis cells (cell freezing) or testis tissue (tissue freezing) were frozen in medium containing dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS) or DMSO, FBS, and various concentrations of trehalose (50, 100, or 200 mM). After thawing, undifferentiated germ cells were enriched and treatments were evaluated for cryopreservation efficiency. The tissue freezing method resulted in significantly greater germ cell recovery (P = 0.041) and proliferation capacity (P < 0.001) compared to the cell freezing treatment. Regardless of freezing method (cell vs. tissue), addition of 200 mM trehalose to freezing medium increased germ cell recovery and proliferation capacity compared to cells frozen using the same freezing method without trehalose. Interestingly, addition of trehalose to the tissue freezing medium significantly increased germ cell recovery (P = 0.012) and proliferation capacity (P = 0.004) compared to the cell freezing treatment supplemented with trehalose. To confirm that cryopreservation in trehalose improves the survival of Spermatogonial stem cell, testis cells enriched for undifferentiated germ cells were xenotransplanted into recipient mouse testes. Germ cells recovered from tissue frozen with 200 mM trehalose generated significantly more (P < 0.001) donor derived colonies than tissue frozen without trehalose. Regardless of cryopreservation medium or freezing method, testis cell recovery, viability, and proliferation capacity of germ cells after thawing were significantly lower compared to those of untreated fresh control. Nevertheless, these data demonstrate that undifferentiated porcine germ cells can be efficiently cryopreserved in the presence of 200 mM trehalose.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult Stem Cells / physiology*
  • Animals
  • Cell Proliferation
  • Cell Survival
  • Cryopreservation / methods
  • Cryopreservation / veterinary*
  • Freezing
  • Male
  • Swine / physiology*
  • Testis / physiology*
  • Trehalose / pharmacology*

Substances

  • Trehalose