Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field

Talanta. 2014 Apr:121:247-55. doi: 10.1016/j.talanta.2013.12.062. Epub 2014 Jan 3.

Abstract

The feasibility of using aptamer-gold nanoparticle conjugates (Apt-AuNPs) to design colorimetric assays for in the field detection of small molecules was investigated. An assay to detect cocaine was designed using two clones of a known cocaine-binding aptamer. The assay was based on the AuNPs difference in affinity for single-stranded DNA (non-binding) and double stranded DNA (target bound). In the first assay, a commonly used design was followed, in which the aptamer and target were incubated to allow binding followed by exposure to the AuNPs. Interactions between the non-bound analytes and the AuNPs surface resulted in a number of false positives. The assay was redesigned by incubating the AuNPs and the aptamer prior to target addition to passivate the AuNPs surface. The adsorbed aptamer was able to bind the target while preventing non-specific interactions. The assay was validated with a number of masking and cutting agents and other controlled substances showing minimal false positives. Studies to improve the assay performance in the field were performed, showing that assay activity could be preserved for up to 2 months. To facilitate the assay analysis, an android application for automatic colorimetric characterization was developed. The application was validated by challenging the assay with cocaine standards of different concentrations, and comparing the results to a conventional plate reader, showing outstanding agreement. Finally, the rapid identification of cocaine in mixtures mimicking street samples was demonstrated. This work established that Apt-AuNPs can be used to design robust assays to be used in the field.

Keywords: Aptamers; Biosensors; Colorimetric app; Nanoparticles/nanotechnology; Nucleic acids; Optical sensors.