Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics

Opt Express. 2014 Mar 24;22(6):7249-60. doi: 10.1364/OE.22.007249.

Abstract

The nonlinear optical property of few-layered MoS₂ nanoplatelets synthesized by the hydrothermal exfoliation method was investigated from the visible to the near-infrared band using lasers. Both open-aperture Z-scan and balanced-detector measurement techniques were used to demonstrate the broadband saturable absorption property of few-layered MoS₂. To explore its potential applications in ultrafast photonics, we fabricated a passive mode locker for ytterbium-doped fibre laser by depositing few-layered MoS₂ onto the end facet of optical fiber by means of an optical trapping approach. Our laser experiment shows that few-layer MoS₂-based mode locker allows for the generation of stable mode-locked laser pulse, centered at 1054.3 nm, with a 3-dB spectral bandwidth of 2.7 nm and a pulse duration of 800 ps. Our finding suggests that few-layered MoS₂ nanoplatelets can be useful nonlinear optical material for laser photonics devices, such as passive laser mode locker, Q-switcher, optical limiter, optical switcher and so on.

Publication types

  • Research Support, Non-U.S. Gov't