A synthetic O2 -tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli

Biotechnol Bioeng. 2015 Jan;112(1):120-8. doi: 10.1002/bit.25324. Epub 2014 Aug 19.

Abstract

Several synthetic metabolic pathways for butanol synthesis have been reported in Escherichia coli by modification of the native CoA-dependent pathway from selected Clostridium species. These pathways are all dependent on the O2 -sensitive AdhE2 enzyme from Clostridium acetobutylicum that catalyzes the sequential reduction of both butyryl-CoA and butyraldehyde. We constructed an O2 -tolerant butanol pathway based on the activities of an ACP-thioesterase, acting on butyryl-ACP in the native fatty acid biosynthesis pathway, and a promiscuous carboxylic acid reductase. The pathway was genetically optimized by screening a series of bacterial acyl-ACP thioesterases and also by modification of the physical growth parameters. In order to evaluate the potential of the pathway for butanol production, the ACP-dependent butanol pathway was compared with a previously established CoA-dependent pathway. The effect of (1) O2 -availability, (2) media, and (3) co-expression of aldehyde reductases was evaluated systematically demonstrating varying and contrasting functionality between the ACP- and CoA-dependent pathways. The yield of butanol from the ACP-dependent pathway was stimulated by enhanced O2 -availability, in contrast to the CoA-dependent pathway, which did not function well under aerobic conditions. Similarly, whilst the CoA-dependent pathway only performed well in complex media, the ACP-dependent pathway was not influenced by the choice of media except in the absence of O2 . A combination of a thioesterase from Bacteroides fragilis and the aldehyde reductase, ahr, from E. coli resulted in the greatest yield of butanol. A product titer of ~300 mg/L was obtained in 24 h under optimal batch growth conditions, in most cases exceeding the performance of the reference CoA-pathway when evaluated under equivalent conditions.

Keywords: Escherichia coli; biofuel; butanol; fatty acid biosynthesis; synthetic pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biofuels
  • Butanols / metabolism*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Fatty Acids / biosynthesis*
  • Metabolic Engineering / methods*
  • Metabolic Networks and Pathways / genetics*

Substances

  • Biofuels
  • Butanols
  • Fatty Acids