Vertebroplasty using bisphosphonate-loaded calcium phosphate cement in a standardized vertebral body bone defect in an osteoporotic sheep model

Acta Biomater. 2014 Nov;10(11):4887-4895. doi: 10.1016/j.actbio.2014.07.012. Epub 2014 Jul 19.

Abstract

In the context of bone regeneration in an osteoporotic environment, the present study describes the development of an approach based on the use of calcium phosphate (CaP) bone substitutes that can promote new bone formation and locally deliver in situ bisphosphonate (BP) directly at the implantation site. The formulation of a CaP material has been optimized by designing an injectable apatitic cement that (i) hardens in situ despite the presence of BP and (ii) provides immediate mechanical properties adapted to clinical applications in an osteoporotic environment. We developed a large animal model for simulating lumbar vertebroplasty through a two-level lateral corpectomy on L3 and L4 vertebrae presenting a standardized osteopenic bone defect that was filled with cements. Both 2-D and 3-D analysis of microarchitectural parameters demonstrated that implantation of BP-loaded cement in such vertebral defects positively influenced the microarchitecture of the adjacent trabecular bone. This biological effect was dependent on the distance from the implant, emphasizing the in situ effect of the BP and its release from the cement. As a drug device combination, this BP-containing apatitic cement shows good promise as a local approach for the prevention of osteoporotic vertebral fractures through percutaneous vertebroplasty procedures.

Keywords: Bisphosphonate; Bone augmentation; Drug-combined device; Injectable cement; Vertebral body.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Cements / pharmacology
  • Bone Cements / therapeutic use*
  • Calcium Phosphates / pharmacology
  • Calcium Phosphates / therapeutic use*
  • Diphosphonates / pharmacology
  • Diphosphonates / therapeutic use*
  • Disease Models, Animal
  • Lumbar Vertebrae / diagnostic imaging
  • Lumbar Vertebrae / drug effects*
  • Lumbar Vertebrae / surgery*
  • Lumbar Vertebrae / ultrastructure
  • Osteoporosis / drug therapy*
  • Osteoporosis / pathology
  • Ovariectomy
  • Prosthesis Implantation
  • Reproducibility of Results
  • Sheep
  • Vertebroplasty*
  • X-Ray Microtomography

Substances

  • Bone Cements
  • Calcium Phosphates
  • Diphosphonates
  • calcium phosphate