Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays

Opt Express. 2014 Jul 28;22(15):18778-89. doi: 10.1364/OE.22.018778.

Abstract

A novel nanofabrication technique based on 4-beam interference lithography is presented that enables the preparation of large macroscopic areas (>50 mm2) of perfectly periodic and defect-free two-dimensional plasmonic arrays of nanoparticles as small as 100 nm. The technique is based on a special interferometer, composed of two mirrors and a sample with photoresist that together form a right-angled corner reflector. In such an interferometer, the incoming expanded laser beam is split into four interfering beams that yield an interference pattern with rectangular symmetry. The interferometer allows setting the periods of the array from about 220 nm to 1500 nm in both directions independently through the rotation of the corner-reflector assembly around horizontal and vertical axes perpendicular to the direction of the incident beam. Using a theoretical model, the implementation of the four-beam interference lithography is discussed in terms of the optimum contrast as well as attainable periods of the array. Several examples of plasmonic arrays (on either glass or polymer substrate layers) fabricated by this technique are presented.

Publication types

  • Research Support, Non-U.S. Gov't