Microarray-based detection and expression analysis of extracellular matrix proteins in drug‑resistant ovarian cancer cell lines

Oncol Rep. 2014 Nov;32(5):1981-90. doi: 10.3892/or.2014.3468. Epub 2014 Sep 9.

Abstract

Ovarian cancer is the most lethal gynecological malignancy. Multiple drug resistance (MDR) development leads to resistance of cancer cells to chemotherapy. Microarray methods can provide information regarding new candidate genes that can play a role in resistance to cytostatic drugs. Extracellular matrix (ECM) can influence drug resistance by inhibiting the penetration of the drug into cancer tissue as well as increased apoptosis resistance. In the present study, we report changes in the ECM and related gene expression pattern in methotrexate-, cisplatin-, doxorubicin-, vincristine-, topotecan- and paclitaxel-resistant variants of the W1 ovarian cancer cell line. The resistant variants of the W1 cell line were generated by stepwise selection of cells with an increasing concentration of the indicated drugs. Affymetrix GeneChip® Human Genome U219 Array Strips were used for hybridizations. Independent t-tests were used to determinate the statistical significance of results. Genes whose expression levels were higher than the assumed threshold (upregulated, >5-fold and downregulated, <5-fold) were visualized using the scatter plot method, selected and listed in the tables. Among the investigated genes, expression of 24 genes increased, expression of 14 genes decreased and expression of three genes increased or decreased depending on the cell line. Among the increased genes, expression of 10 increased very significantly, >20-fold. These genes were: ITGB1BP3, COL3A1, COL5A2, COL15A1, TGFBI, DCN, LUM, MATN2, POSTN and EGFL6. The expression of seven genes decreased very significantly: ITGA1, COL1A2, LAMA2, GPC3, KRT23, VIT and HMCN1. The expression pattern of ECM and related genes provided the preliminary view into the role of ECM components in cytostatic drug resistance of cancer cells. The exact role of the investigated genes in drug resistance requires further investigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm*
  • Extracellular Matrix Proteins / genetics*
  • Female
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Oligonucleotide Array Sequence Analysis / methods*
  • Ovarian Neoplasms / drug therapy
  • Ovarian Neoplasms / genetics*

Substances

  • Antineoplastic Agents
  • Extracellular Matrix Proteins