NiCo2O4 nanostructure materials: morphology control and electrochemical energy storage

Dalton Trans. 2014 Nov 14;43(42):15887-97. doi: 10.1039/c4dt02276a.

Abstract

Three types of NiCo2O4 nanostructure, homogeneous NiCo2O4 nanoneedle arrays, heterogeneous NiCo2O4 nanoflake arrays and NiCo2O4 nanoneedle-assembled sisal-like microspheres are synthesized via facile solution methods in combination with thermal treatment. The NiCo2O4 nanoneedle arrays are evaluated as supercapacitor electrodes and demonstrate excellent electrochemical performances with a high specific capacitance (923 F g(-1) at 2 A g(-1)), good rate capability, and superior cycling stability. The superior capacitive performances are mainly due to the unique one dimensional porous nanoneedle architecture, which provides a faster ion/electron transfer rate, improved reactivity, and enhanced structural stability. The fabrication method presented here is facile, cost-effective and scalable, which may open a new pathway for real device applications.