Pharmacometabolomics of l-carnitine treatment response phenotypes in patients with septic shock

Ann Am Thorac Soc. 2015 Jan;12(1):46-56. doi: 10.1513/AnnalsATS.201409-415OC.

Abstract

Rationale: Sepsis therapeutics have a poor history of success in clinical trials, due in part to the heterogeneity of enrolled patients. Pharmacometabolomics could differentiate drug response phenotypes and permit a precision medicine approach to sepsis.

Objectives: To use existing serum samples from the phase 1 clinical trial of l-carnitine treatment for severe sepsis to metabolically phenotype l-carnitine responders and nonresponders.

Methods: Serum samples collected before (T0) and after completion of the infusion (T24, T48) from patients randomized to either l-carnitine (12 g) or placebo for the treatment of vasopressor-dependent septic shock were assayed by untargeted (1)H-nuclear magnetic resonance metabolomics. The normalized, quantified metabolite data sets of l-carnitine- and placebo-treated patients at each time point were compared by analysis of variance with post-hoc testing for multiple comparisons. Pathway analysis was performed to statistically rank metabolic networks.

Measurements and main results: Thirty-eight metabolites were identified in all samples. Concentrations of 3-hydroxybutyrate, acetoacetate, and 3-hydroxyisovalerate were different at T0 and over time in l-carnitine-treated survivors versus nonsurvivors. Pathway analysis of pretreatment metabolites revealed that synthesis and degradation of ketone bodies had the greatest impact in differentiating l-carnitine treatment response. Analysis of all patients based on pretreatment 3-hydroxybutyrate concentration yielded distinct phenotypes. Using the T0 median 3-hydroxybutyrate level (153 μM), patients were categorized as either high or low ketone. l-Carnitine-treated low-ketone patients had greater use of carnitine as evidenced by lower post-treatment l-carnitine levels. The l-carnitine responders also had faster resolution of vasopressor requirement and a trend toward a greater improvement in mortality at 1 year (P = 0.038) compared with patients with higher 3-hydroxybutyrate.

Conclusions: The results of this preliminary study, which were not readily apparent from the parent clinical trial, show a unique metabolite profile of l-carnitine responders and introduce pharmacometabolomics as a viable strategy for informing l-carnitine responsiveness. The approach taken in this study represents a concrete example for the application of precision medicine to sepsis therapeutics that warrants further study.

Keywords: 3-hydroxybutyric acid; individualized medicine; ketone bodies; nuclear magnetic resonance; sepsis.

Publication types

  • Clinical Trial, Phase I
  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Hydroxybutyric Acid / blood
  • Acetoacetates / blood
  • Aged
  • Carnitine / pharmacokinetics*
  • Female
  • Humans
  • Magnetic Resonance Spectroscopy
  • Male
  • Metabolomics / methods*
  • Middle Aged
  • Phenotype
  • Shock, Septic / drug therapy*
  • Shock, Septic / metabolism
  • Treatment Outcome
  • Valerates / blood
  • Vitamin B Complex / pharmacokinetics
  • Vitamin B Complex / therapeutic use

Substances

  • Acetoacetates
  • Valerates
  • Vitamin B Complex
  • beta-hydroxyisovaleric acid
  • acetoacetic acid
  • Carnitine
  • 3-Hydroxybutyric Acid