Influence of urban activity in modifying water parameters, concentration and uptake of heavy metals in Typha latifolia L. into a river that crosses an industrial city

J Environ Health Sci Eng. 2015 Jan 25:13:5. doi: 10.1186/s40201-015-0161-7. eCollection 2015.

Abstract

Background: Heavy metals like Cu, Cd, Pb, Ni, Co and Cr can naturally be found almost all over this planet in various amounts. Urban activities such as heavy metal industry, traffic and waste can rapidly increase the metal concentrations in a fresh water ecosystem.

Methods: This study was done in natural conditions to capture as many aspects in heavy metals pollution and bioremediation of Nicolina River, Romania considered a stream model which is under anthropogenic pressure. Water, sediment and leaves samples of Typha latifolia L. were collected during October 2013 and analyzed in order to assess certain heavy metals (Cu, Cd, Pb, Ni, Co and Cr) from each sampling site using GF-HR-CS-AAS with platform. Heavy metals in significant concentrations in cattail samples were correlated with the water parameters to show the possibility to use the cattail leaves as indicators in heavy metals pollution with potential in bioremediation because they can be easily harvested in autumn and this species is spread worldwide.

Results: The levels of metals concentrations in leaves were: Cu > Ni > Cr > Pb > Co knowing that copper is an essential element for plants. The sampling time was important to draw the river diagnosis for heavy metal pollution. The samples were collected, from river, after more than 60 days without rain same as a "human patient" prepared for blood test. Cobalt was considered the metal marker because it was an element with the lowest level of usage in the city. Compared with it only lead, cadmium and copper were used intensively in the industrial activities.

Conclusions: T. latifolia L. can be use as an indicator for the health of the studied stream and it was noticed that the heavy metals were not accumulated, although the metal uptake was influenced by sediments and water parameters. The alkalinity of the studied river acts as an inhibitor in the bioremediation process of cattail for cadmium and copper. Lead was uptake by leaves and the water parameters influenced it but it wasn't concentrated enough in leaves to propose this species in lead bioremediation process for Nicolina River.

Keywords: Bioremediation; Environmental interactions; Heavy metals; Metal uptake; Typha latifolia; Urban activities.