Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems

Adv Colloid Interface Sci. 2015 Jun:220:54-77. doi: 10.1016/j.cis.2015.02.006. Epub 2015 Mar 5.

Abstract

Changing the wetting state of materials is a growing field of research in many areas of engineering and science. In the oil industry, the term wettability alteration usually refers to the process of making the reservoir rock more water-wet. This is of particular importance in naturally hydrophobic carbonates, fractured formations, and heavy-oil systems. This shift in wettability enhances oil recovery in oil-wet and weakly water-wet reservoirs and eventually increases the ultimate oil recovery. For wettability alteration, two methods have been traditionally used: Thermal and chemical. Although many attempts have been made on reviewing the advancement of research in certain aspects of wettability, a comprehensive review of these techniques, especially in terms of the classification of the chemicals used, has been ignored. In this paper, we begin with this review and provide the past experience of wettability alteration in sandstone and carbonate reservoirs. More than 100 papers were reviewed extensively with an in-depth analysis of different methods suggested in literature. The areas of controversy and contradicted observations are discussed. The limitations and the applicability of each method were analyzed. Concerns on up-scaling laboratory findings to field scale are also addressed. The most promising potential methods are identified and their critical conditions highlighted. At the end, a selection of reviewed methods is validated experimentally for one of the most challenging cases: Extra heavy-oil and bitumen recovery from fractured-strongly-oil-wet carbonates. Berea sandstone (aged to be oil-wet) and Indiana limestone samples were saturated with heavy oil (3600cp). Next, the process was initiated by soaking the cores into solvent (heptane or diluent oil) and the oil recovery was estimated using refractive index measurements. Note that solvent was selected to dilute the oil and recover a considerable amount of oil as any chemical or thermal methods yielded inefficiently low recoveries. After the solvent phase, the samples were exposed to wettability alteration through selected chemicals at different temperature conditions through spontaneous imbibition tests to recover more oil and retrieve the solvent diffuse into the sample back. The most promising wettability alteration agents for each type of rock were marked and optimal application conditions (temperatures, injection sequence) were identified. Selected wettability alteration chemicals were finally tested on the bitumen (5-9° API-1,600,000cp) containing Grosmont carbonate sample from Alberta, Canada. It is hoped that this review fills in the gap in the area of wettability alteration processes by summarizing, critically analyzing, and testing the methods suggested in the literature.

Keywords: Heavy-oil; Solvent injection; Wettability alteration.

Publication types

  • Review