Entanglement swapping between discrete and continuous variables

Phys Rev Lett. 2015 Mar 13;114(10):100501. doi: 10.1103/PhysRevLett.114.100501. Epub 2015 Mar 9.

Abstract

We experimentally realize "hybrid" entanglement swapping between discrete-variable (DV) and continuous-variable (CV) optical systems. DV two-mode entanglement as obtainable from a single photon split at a beam splitter is robustly transferred by means of efficient CV entanglement and operations, using sources of squeezed light and homodyne detections. The DV entanglement after the swapping is verified without postselection by the logarithmic negativity of up to 0.28±0.01. Furthermore, our analysis shows that the optimally transferred state can be postselected into a highly entangled state that violates a Clauser-Horne-Shimony-Holt inequality by more than 4 standard deviations, and thus it may serve as a resource for quantum teleportation and quantum cryptography.