Kinesin's front head is gated by the backward orientation of its neck linker

Cell Rep. 2015 Mar 31;10(12):1967-73. doi: 10.1016/j.celrep.2015.02.061. Epub 2015 Mar 26.

Abstract

Kinesin-1 is a two-headed motor that takes processive 8-nm hand-over-hand steps and transports intracellular cargos toward the plus-end of microtubules. Processive motility requires a gating mechanism to coordinate the mechanochemical cycles of the two heads. Kinesin gating involves neck linker (NL), a short peptide that interconnects the heads, but it remains unclear whether gating is facilitated by the NL orientation or tension. Using optical trapping, we measured the force-dependent microtubule release rate of kinesin monomers under different nucleotide conditions and pulling geometries. We find that pulling NL in the backward direction inhibits nucleotide binding and subsequent release from the microtubule. This inhibition is independent of the magnitude of tension (2-8 pN) exerted on NL. Our results provide evidence that the front head of a kinesin dimer is gated by the backward orientation of its NL until the rear head releases from the microtubule.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Diphosphate / metabolism
  • Adenosine Triphosphate / metabolism
  • Biological Transport
  • Humans
  • Hydrolysis
  • Kinesins / metabolism*
  • Kinetics
  • Microtubules / metabolism*
  • Protein Multimerization / physiology

Substances

  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Kinesins