Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs

J Chem Phys. 2015 Mar 28;142(12):124104. doi: 10.1063/1.4916070.

Abstract

Water in different phases under various external conditions is very important in bio-chemical systems and for material science at surfaces. Density functional theory methods and approximations thereof have to be tested system specifically to benchmark their accuracy regarding computed structures and interaction energies. In this study, we present and test a set of ten ice polymorphs in comparison to experimental data with mass densities ranging from 0.9 to 1.5 g/cm(3) and including explicit corrections for zero-point vibrational and thermal effects. London dispersion inclusive density functionals at the generalized gradient approximation (GGA), meta-GGA, and hybrid level as well as alternative low-cost molecular orbital methods are considered. The widely used functional of Perdew, Burke and Ernzerhof (PBE) systematically overbinds and overall provides inconsistent results. All other tested methods yield reasonable to very good accuracy. BLYP-D3(atm) gives excellent results with mean absolute errors for the lattice energy below 1 kcal/mol (7% relative deviation). The corresponding optimized structures are very accurate with mean absolute relative deviations (MARDs) from the reference unit cell volume below 1%. The impact of Axilrod-Teller-Muto (atm) type three-body dispersion and of non-local Fock exchange is small but on average their inclusion improves the results. While the density functional tight-binding model DFTB3-D3 performs well for low density phases, it does not yield good high density structures. As low-cost alternative for structure related problems, we recommend the recently introduced minimal basis Hartree-Fock method HF-3c with a MARD of about 3%.

Publication types

  • Comparative Study

MeSH terms

  • Ice*
  • Models, Chemical*

Substances

  • Ice