Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination

BMC Plant Biol. 2015 Apr 8:15:97. doi: 10.1186/s12870-015-0471-z.

Abstract

Background: Wheat seeds provide a staple food and an important protein source for the world's population. Seed germination is vital to wheat growth and development and directly affects grain yield and quality. In this study, we performed the first comparative proteomic analysis of wheat embryo and endosperm during seed germination.

Results: The proteomic changes in embryo and endosperm during the four different seed germination stages of elite Chinese bread wheat cultivar Zhengmai 9023 were first investigated. In total, 74 and 34 differentially expressed protein (DEP) spots representing 63 and 26 unique proteins were identified in embryo and endosperm, respectively. Eight common DEP were present in both tissues, and 55 and 18 DEP were specific to embryo and endosperm, respectively. These identified DEP spots could be sorted into 13 functional groups, in which the main group was involved in different metabolism pathways, particularly in the reserves necessary for mobilization in preparation for seed germination. The DEPs from the embryo were mainly related to carbohydrate metabolism, proteometabolism, amino acid metabolism, nucleic acid metabolism, and stress-related proteins, whereas those from the endosperm were mainly involved in protein storage, carbohydrate metabolism, inhibitors, stress response, and protein synthesis. During seed germination, both embryo and endosperm had a basic pattern of oxygen consumption, so the proteins related to respiration and energy metabolism were up-regulated or down-regulated along with respiration of wheat seeds. When germination was complete, most storage proteins from the endosperm began to be mobilized, but only a small amount was degraded during germination. Transcription expression of six representative DEP genes at the mRNA level was consistent with their protein expression changes.

Conclusion: Wheat seed germination is a complex process with imbibition, stirring, and germination stages, which involve a series of physiological, morphological, and proteomic changes. The first process is a rapid water uptake, in which the seed coat becomes softer and the physical state of storage materials change gradually. Then the germinated seed enters the second process (a plateau phase) and the third process (the embryonic axes elongation). Seed embryo and endosperm display distinct differentially expressed proteins, and their synergistic expression mechanisms provide a basis for the normal germination of wheat seeds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endosperm / genetics
  • Endosperm / growth & development
  • Endosperm / metabolism
  • Gene Expression Regulation, Plant*
  • Germination*
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • Proteome / genetics*
  • Proteome / metabolism
  • Seeds / genetics
  • Seeds / growth & development
  • Seeds / metabolism
  • Triticum / genetics*
  • Triticum / growth & development
  • Triticum / metabolism

Substances

  • Plant Proteins
  • Proteome