Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

Nat Commun. 2015 Jun 15:6:7416. doi: 10.1038/ncomms8416.

Abstract

Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual 'cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields--the fast-growing photonic crystal and shape-memory polymer technologies--enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.