QM/MM modeling of the hydroxylation of the androstenedione substrate catalyzed by cytochrome P450 aromatase (CYP19A1)

J Comput Chem. 2015 Sep 5;36(23):1736-47. doi: 10.1002/jcc.23967. Epub 2015 Jun 19.

Abstract

CYP19A1 aromatase is a member of the Cytochrome P450 family of hemeproteins, and is the enzyme responsible for the final step of the androgens conversion into the corresponding estrogens, via a three-step oxidative process. For this reason, the inhibition of this enzyme plays an important role in the treatment of hormone-dependent breast cancer. The first catalytic subcycle, corresponding to the hydroxilation of androstenedione, has been proposed to occur through a first hydrogen abstraction and a subsequent oxygen rebound step. In present work, we have studied the mechanism of the first catalytic subcycle by means of hybrid quantum mechanics/molecular mechanics methods. The inclusion of the protein flexibility has been achieved by means of Free Energy Perturbation techniques, giving rise to a free energy of activation for the hydrogen abstraction step of 13.5 kcal/mol. The subsequent oxygen rebound step, characterized by a small free energy barrier (1.5 kcal/mol), leads to the hydroxylated products through a highly exergonic reaction. In addition, an analysis of the primary deuterium kinetic isotopic effects, calculated for the hydrogen abstraction step, reveals values (∼10) overpassing the semiclassical limit for the CH, indicating the presence of a substantial tunnel effect. Finally, a decomposition analysis of the interaction energy for the substrate and cofactor in the active site is also discussed. According to our results, the role of the enzymatic environment consists of a transition state stabilization by means of dispersive and polarization effects.

Keywords: CYP19A1; androstenedione; aromatase; compound I; cytochrome P450; hydrogen abstraction; quantum mechanics/molecular mechanics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Androstenedione / chemistry
  • Androstenedione / metabolism*
  • Aromatase / chemistry
  • Aromatase / metabolism*
  • Breast Neoplasms / enzymology
  • Catalytic Domain
  • Female
  • Humans
  • Hydroxylation
  • Molecular Dynamics Simulation
  • Oxygen / metabolism
  • Quantum Theory
  • Thermodynamics

Substances

  • Androstenedione
  • Aromatase
  • CYP19A1 protein, human
  • Oxygen